Rank
rank(A) = the dimension of column space of A, i.e., \(\dim\text{span }\{a_1, \cdots, a_n\}\)
- \(\text{rank} (A+B) \leq \text{rank}(A) + \text{rank}(B)\).
秩的各种定义
行秩列秩相等性
基本证明思路:
列秩为像空间的维度,行秩为非零原像空间的维度
- \(\text{column rank} = \dim \Im(A) = \dim \{Ax: x\in \mathbb{R}^{n}\}\).
- \(\text{row rank} = \dim \{x\in\mathbb{R}^{n} : Ax\neq 0\}\).